

6G BRAINS(Bring Reinforcement-learning Into Radio Light Network for Massive Connections):

6G Measurable Proof of Concept Performance KPIs Dr. Wei Li Viavi Solutions

6G BRAINS: Vision

- Primary test cases
 - Offloading of the PLC Control Function to the Edge
 - Advanced Network Slicing
 - Smart Transportation Vehicles: Localization and Video Processing Offloading
- Secondary test cases
 - Maintenance Video Guides in Factories and Warehouses
 - Animal Tracking in Indoor Farming Scenarios
 - Airports Service and Baggage Handling Robots

D4	\cdot \cdot \cdot \cdot \cdot \cdot \cdot f_x																													
	Α	С	D	E	F	G	н	1	J	К	L	м	N	0	Р	Q	R	S	т	U	V	W	X	Y	z	AA	AB	AC	AD	AB
1		Year	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	
2		Month	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
3			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Арі
4	WP 1 Project Management and Coo	EUR								M01				M02																
5	Task 1.1 Administrative Project Ma	EUR						D1.1							D1.2														D1.3	
3	Task 1.2 Scientific and Technical M	ULEIC						D1.1							D1.2														D1.3	
7	1/0/1900		0																											
3	WP 2. User and Learning Requirem	ULEIC																												
	Task 2.1: Definition and Analysis o	BOSCH						D2.1																		D2.4				
0	Task 2.2: 6G-BRAINS Network Req	UWS								D2,2																				
1	Task 2.3: Multi-agent Deep Reinfor	THALES	;								D2.3																			
2	Task 2.4: Measurable Proof of Con <event></event>	VIAVI								D2.2	U	20	216	G B	КАП	<u>и</u> 5 с	ons	ortii	um.	All r	Igni	s re	serv	/ea			4			

	Offloading of the PLC Control Function to the	Smart Transpo	rtation Vehicles	Maintenance Video Guides	Advanced Network Slicing	Animal Tracking in Indoor Farming	Airports Service and Baggage Handling		
	Edge	Localization	Video Processing Offloading		Jinting	Scenarios	Robots		
Round trip time (sensor to controller to actuator)	< 10 ms (250 μs - 10 ms)	50 ms	50 ms	>50ms	5-15ms	>50 ms to seconds	10 ms		
Reliability (packet error rate within latency reqs.	10 ⁻⁸	10-6	10-4	10-2	10-6	10 ⁻⁵	10 ⁻⁶		
Data rate	kbit/s-Mbit/s	kbit/s-Mbit/s	Mbit/s-Gbit/s	kbit/s-Mbit/s	kbit/s-Mbit/s; 10+Gbps at backbone	kbit/s	Mbit/s-Gbit/s		
Packet size	up to 1500 Byte	20-50 Byte	1500 Byte	<300 Byte	<300 Byte	<80 Byte	>200 Byte		
Covered distance (from an access point)	within the facility	within the facility	within the facility	<200 m	within the facility	100 m-1 km	<100 m		
Movement speed of the user	< 1 m/s	<10 m/s	<10 m/s	<40 m/s	< 10 m/s	< 10 m/s	< 3 m/s		
Time critical handover support	Yes	Yes	Yes	No	Yes	No	No		
User equipment density	0.33-3 per m ²	0.001 per m ²	0.001 per m ²	0.1 per m ²	0.3 per m ²	10000 per plant	0.03-0.02 per m ²		
Energy efficiency (user equipment battery lifetime)	n/a	n/a	n/a	n/a	< 8h	1 years	1 day		
Location detection accuracy	<50 cm	1 cm	n/a	<1 cm	<5 cm	from 1 mm to <10 cm	< 1 cm		
Service availability	99.999%	99.999 %	99.999 %	99.9 %	99.999 %	99.9 %	99.9 %		
Slice configuration / reconfiguration time	1 s	1 s	1 s	1 s	1 s	1 s	1 s		

For raw data streaming driven test cases

Partner	Innovation aspects of 6G BRAINS	Short description of the aspect incl. its expected value/quality (i.e. requirement)						
	(expected to be present in one of the use cases)							
ULEIC	Industry E2E Reliability (low package loss) over D2D	In industrial scenarios, closed-loop control applications will require E2E reliability of up to 1-10 ⁷ to maintain close synchronization at E2E, per-link reliability of around 1-10 ⁹						
	E2E Latency	Latencies as low as 1 ms, and user plane latency around 0.1 ms						
	Area traffic capacity	>1 Gb/s/m ²						
VIAVI	Peak UE data rate (L3)	>1 Gbps/UE						
	UE latency	1 ms						
	UE density	>10 ⁴ per base station						
UBrunel	Traffic Analyser and Scheduler	Time required to change slice capacity or update schedule = one subframe slot interval e.g. 1ms for SCS = 15kHz. Slice or schedule changes occur maximum three times a day (i.e. once every new shift) for Flexible Factory IoT use case scenario and maximum once a week for Highly Flexible and Customised Factory IoT use case scenario. Detect packet size, inter-packet arrival time and jitter statistics. Eight 9s reliability						
	Heterogeneous traffic generator	Time required to change slice capacity or update schedule = 1 slot interval e.g.1ms for SCS = 15kHz. Traffic changes occur maximum three times a day (i.e. once every new shift) for Flexible Factory IoT use case scenario and maximum once a week for Highly Flexible and Customised Factory IoT use case scenario. Eight 9s reliability						
	Localization Precision	1 cm accuracy every 0.5 seconds.						
	Localization Precision	1.0 m accuracy every 60 seconds.						
ISEP	Localization reliability, visible light and RF	PD angle error (+/-3°)						
	Localization coverage	99%						
REL	RAN (PHY) Latency	< slot interval (e.g., 1 msec) per hop						
	RAN (PHY) reliability	< 10exp(-6)						
	RAN capacity/ UE	> 1Gbps © 2021 6G BRAINS consortium. All rights reserved 6						

For raw data streaming driven test cases

Dartnar		Chart description of the expection lite expected value (quality (i.e. requirement)
Partner		Short description of the aspect incl. its expected value/quality (i.e. requirement)
	(expected to be present in one of the use cases)	
UWS		10+ Gbps network slicing capacity at data plane switches
	Low delay to change/stop/start/create a backbone	In the order of seconds in worst cases, and under 1 second in best cases
	network slice	
	High flexibility in backbone slice definition	Allowing flexible definition of network slices in terms of multi-tenancy, flows at various levels of
		granularity, industrial protocols, and so on.
ECOM	RAN network slicing capacity	RAN slicing with 2-4 ms latency and 200 Mbps DL and UL
	AI-based RAN slicing	Optimised radio resource allocation and scheduling for both inter-slice and intra-slice cases
	Directional RAN slicing	Coupled with beamforming informed by CSI
	RAN network slicing capacity	RAN slicing with 2-4 ms latency and 200 Mbps DL and UL
OLED	Light source & photoreceiver modulation bandwidth	The light source modulation bandwidth (BW) may limit the achievable data rate (e.g. white LED with 2
		MHz BW = data rate < 50 Mbps). Infrared sources may be preferred (e.g. 200 MHz IR source with high
		SNR = 1Gbps+ data rate)
	Sigal to noise ratio of the received OWC signal	The data rate, bit error rate and coverage of any OWC system are closely related to the SNR of the
	-	received signal (uplink or downlink). An SNR target must thus be fixed depending on the QoS and
		service area needed for each use case.
BOSCH	Example: High data rate	Data rate up to 3 Gbps, pick data rate 5 Gbps
	Example: Self-optimized management of campus	Using feedback from and monitoring of UEs, network optimizes itself with the help AI
	networks	
	Example: Low transmit jitter	To support deterministic communication, data transfer system identifies deterministic flows and
		guarantees low jitter in the range from 100 till 200 ns
FhG	Multi-band measurements in large scenarios	Integration of multi-band channel sounders in sub-6 Ghz, mm-waves, sub-THz, and VLC to analyze
_		propagation in the different frequencies
	Multi-band propagation parameters	Influence of @equence and Bystem aspects (antennals directivity) on coverage, DS, and Ass

System overall logical architecture

Primary user cases:

- Offloading of the PLC Control Function to the Edge
- Smart Transportation Vehicles: Localization and Video Processing Offloading
- Advanced Network Slicing

Secondary user cases:

- Maintenance Video Guides in Factories and Warehouses
- Animal Tracking in Indoor Farming Scenarios
- Airports Service and Baggage Handling Robots

Control from the Edge: Offloading the controller application of all machines in the production line to an edge device

Robert Basch Cambri 2019. All night Hesselvedt allso reuchdragh and de postilizenzacionenn vegar Besterk-Minnergrandmibera, Weiwerstehn mei oliverten Spilzensrein Vernebistensreisbenerge

Primary user case

6GBRAINS

-- Offloading of the PLC Control Function to the Edge

Profitap:

- High precision network packet capture device (8 ns)
- With dedicated hardware to monitor data packet

Primary user case(Phase 2)

-- Offloading of the PLC Control Function to the Edge

6GBRAINS

Primary user case(Phase 2)

-- Offloading of the PLC Control Function to the Edge

Measurement steps:

- 1. Configure network slice for measurement from management server. e.g. bandwidth, QoS
- 2. Start slice creation procedure.
- 3. Configure Profitap1 and Profitap 2 into capture/monitoring mode
- 4. UE attach to the network
- 5. Send command from MEC to UE and forward data packet to slaves. Meanwhile, slaves generate feedback data packet to UE, then send back to MEC server.
- 6. Profitap1 and Profitap2 measure the timing, jitter, traffic data rate, analyze packet error rate.

Primary user case

-- Smart Transportation Vehicles: Localization and Video Processing

6GBRAINSOffloading

- Receive a request for a transport job
- A fleet planning agent assigns a new job to an available AGV and informs the communication and compute system about new participant along with requirements for communication and localization functions.

PUBLIC-PRIVATE PARTNERSHIP

PPP

The network optimization and QoS provisioning agent assigns/modifies a corresponding network slice to provide the required QoS for time of the operation.

Challenge

- Latency & Jitter
- Localization

-- Maintenance Video Guides in Factories and Warehouses

- Initiate AR maintenance session by accessing app, specify type of equipment and fault symptoms to view and access from database, view video of equipment with pausing and/or rewinding if required using voice commands.
- Initiate AR maintenance session by accessing app, specify type of infrastructure and fault symptoms to view and access from database, view graphics of infrastructure correctly overlaid onto screen and use voice commands to change types of infrastructure.
- During maintenance session, enable access to an interface with virtualized software regarding maintenance systems, equipment control software or other relevant software systems.
- Upload record of maintenance procedure videos on database and voice key words for hash searches.
- Update any modifications/enhancements to gas, water, electricity, pneumatics infrastructure after completion of a maintenance job on graphics of infrastructure.

-- Advanced Network Slicing

- 1. First trigger: Network slice service subscription by a vertical user through the voice-controlled user interface.
- 2. Network slice definition and creation/instantiation through intentbased management and control.
- 3. Network slice instances are up and running end to end.
- 4. Trigger: intra-slicing issue.
- 5. Response: intra-slicing AI control loop solution.
- 6. Trigger: inter-slicing issue.
- 7. Response: inter-slicing AI control loop solution.
- 8. Trigger: UE out of range.
- 9. Response: directional RAN slicing solution.
- 10. Trigger: backbone slicing issue.
- 11. Response: hybrid backbone slicing solution.

-- Animal Tracking in Indoor Farming Scenarios

- 1) Start a network slice for animal tracking service.
- 2) UE attaches to the network.
- 3) Sensors collect animal information and send back the information to the network side. And optionally camera send back live dynamics video of the herd.
- 4) Network side construct AR video for each animal using received animal information and video
- 5) Farmers could inspect each animal via AR video.
- 6) Animal monitoring system notifying farmer of likely distress state of animal and identification of the distressed animal so that the farmer can find it with the help of augmented reality glasses.
- 7) Upload record of animal health on regulatory body database and voice key words for hash searches

-- Airports Service and Baggage Handling Robots

- 1) Set up network to measure distance from UE to one RU and measure accuracy mean and variability.
- 2) Set up network to measure distance from UE to four RUs successively and measure accuracy mean and variability.
- 3) Send distance measurements to location database and server of Monitoring Plane Server, and calculate mean and variance position accuracy.
- 4) Use data from location server on Monitoring Plane Server to generate topology

Acknowledgement and disclaimer

- This work has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101017226, project 6G BRAINS.
- This presentation reflects the author's view, only, and the Commission is not responsible for any use that may be made of the information provided.

THANK YOU FOR YOUR ATTENTION

WEI.LI@VIAVISOLUTIONS.COM AND ALL@5G-PPP.EU HTTPS://6G-BRAINS.EU/

6G BRAINS partners

THALES

